
The results obtained confirm the necessity for a deep analysis of the fluctuating struc- 
ture to create reliable methods of computing the heat transfer. 

NOTATION 

v dU~, acceleration parameter; R~ and R~, corre- Cf, local friction coefficient; K--U~ dX 

lation coefficients; Re~* = U 6~*/~,T Reynolds number; U, V, mean velocity components in the 

X and Y directions, m/sec; u', v', fluctuating velocity components, m/sec; St, Stanton number; 
X, Y, longitudinal and transverse coordinates, m; Y+, "wall" coordinate; 6, boundary layer 
thickness, m; 6T, thermal boundary layer thickness, m; 6**, displacement thickness, m; ~*, 

thickness of loss of energy, m; 0', temperature fluctuations, ~ ~, viscosity, m2/seco Sub- 
scripts: ~, in the free stream. 
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INFLUENCE OF PERMEABILITY OF AXISYMMETRIC 

SURFACES ON THEIR SEPARATION FLOW 

M. I. Nisht and A. G. Sudakov UDC 532.5.013.12 

The separation flow of an ideal incompressible fluid around axisYmmetric permeable 
surfaces is investigated on the basis of the model of a uniformly perforated surface. 

I. Interest in the investigation of the separation flow around axisymmetric surfaces 
is related primarily to their utilization as different braking apparatus, of parachutes, say. 
Generalapproaches to diagramming such separation flows within the framework of an ideal in- 
compressible medium and effective numerical methods for their analysis on an electronic 
computer are proposed in [I]. On this basis the separation flow around axisymmetric surfaces 
of different shape, including during motion with acceleration, is studied [2]. It was here 
assumed in the computations that the streamlined body is impermeable. 

As a rule, however, braking apparatus are fabricated from materials that are capable of 
transferring fluid particles under the effect of a pressure difference, i.e., are permeable. 
In addition to fabrics, among permeable surfaces are also different grids, perforated plates, 
shells, and other structures. 

A periodic change in the velocities and pressures that is associated with the alternation 
of the impermeable and permeable surface sections is observed in its neighborhood during the 
flow around a permeable surface. The wake being formed behind it is shaped under the effect 
of both the external flow and the internal flow through the permeable surface. Exact modeling 
of the permeability phenomenon is a very complex hydrodynamic problem; consequently, analysis 
of the fluid flow through a permeable surface is performed expediently at the "hydraulic" 
level by means of the average flow characteristics by introducing a certain discontinuity 
surface. Such an approach to studying the aerodynamics of permeable surfaces was proposed 
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by Rakhmatulin [3], who introduced the model of a uniformly permeable surface into the consi- 
derations. According to [3], the boundary condition on a uniformly permeable surface contains 

the average normal component of the relative velocity of the medium, the so-called penetra- 
tion velocity V i that is related to the magnitude of the pressure drop Ap acting at this 

point: 

v~ = f (Ap). ( 1 )  

The main disadvantage of the model of a uniformly permeable surface [3] is the absence 
of boundary conditions in the system, that are obtained from the general conservation laws on 
a discontinuuity, for the relationship taking account of hydraulic losses in the fluid flowing 
through the penetrable surface. This circumstance is felt principally in the determination 
of the hydrodynamic characteristics of the permeable surfaces and can result in contradictions 
to experiment. Thus, for example, an increase in the drag coefiicient of a permeable plate 
was obtained in [4] as compared with an impermeable plate when a stationary incompressible 
fluid flowed around it. Results of experimental investigations indicate the reverse [5]. 

In the general case, the problem of analyzing the hydrodynamic characteristics of per- 
meable surfaces with hydraulic losses in the average flow taken into account is sufficiently 
complex. However, if certain assumptions are introduced about the flow parameters in the 
fluid jet mixing domain that occur on the exterior side of the permeable surface, then the 
solution of the problem is simplified considerably. 

Let us introduce the model of a uniformly perforated surface in the consideration, where- 
by we understand it to be an idealized surface to which the real permeable surface tends as 
the quantity of orifices increases while their total area or degree of permeability o = AF/F 
is simultaneously conserved (AF is the total orifice area on a section of a permeable plate 

with area F). 

We obtain a relationship connecting the hydrodynamic load acting on a uniformly perforated 
and uniformly permeable surface, for which we extract a control volume Q in the internal flow 
impinging on the section of the permeable surface F and we write the momentum equation for it: 

oK + j. = S'~ .f + 
ot Q Q s F 

(2) 

The control surface S includes the stream surface and the normal section of the stream 
tube directly behind and ahead of the penetrable surface. The normal section ahead of the 
permeable surface is here selected in such a manner that during passage to the limit from the 
real penetrable surface to the uniformly perforated surface it approaches infinitely closely 
to this latter and the stream characteristics in this section would be independent of the 
specific structure of the perforations. It is easy to see that in this case the flow para- 
meters in the section will tend to the corresponding flow parameters directly ahead of the 
uniformly permeable surface during passage to the limit. 

To determine the parameters in the section directly behind the permeable surface, we 
make the assumption that the hydraulic losses are concentrated completely in the fluid jet 
mixing domain flowing out from the surface, and the pressure in this section (the base pres- 
sure) is determined primarily by the large-scale structure of the vortex wake rather than the 
local effects taking place in the jet mixing domain. Then taking account of the results of 
experiments [6], from which there follows that the fluid jet mixing domain is proportional to 
the characteristic size of the performations, and executing the passage to the limit to the 
uniformly perforated surface, we obtain that the pressure directly behind it equals the 
pressure behind the uniformly penetrable surface. 

If the passage to the limit is now performed to the uniformly perforated surface in (2), 
then we obtain in projections on the normal to the surface F 

R .  = Ap - -  oV~ (1 - -  ~),  ( 3 )  

where Rn is the normal component of the hydrodynamic force (the average pressure drop Ap ~ 
on the uniformly perforated surface. 

Since ~ = i/o, then the average pressure on the uniformly perforated surface turns out 
to be less than on the uniformly penetrable surface. 
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Let us note still another feature of the flow around permeable surfaces - the presence of 
tangential forces R T distributed over the surface, which we will characterize by the dimension- 
less coefficient cT = RT/(I/2pV$). In contrast to the normal hydrodynamic force Rn, the 
quantity R T is determined not only by the dependence (i) and the degree of permeability ~, 
but also by the form of the permeable surface (for instance, for infinitely thin surfaces with 
orifices R T = 0). Consequently, a formula analogous to (3) can be obtained for c T only by 
introducing additional characteristics of the permeable surface. If the orifices in the 
permeable surface are not profiled in any special manner, then for an appropriate permeable 
surface thickness it can be considered that the fluid flows out of them along the normal to 
the surface, and therefore, the tangential component of the mean fluid velocity on the outer 
side of the surface equals zero (VT_ = 0). By projecting (2) on the direction of the tangent 
to the surface and performing the passage in the limit to the uniformly perforated surface, 
we obtain 

R, = pVy,+ ,  (4) 

where V is the tangential component of the mean fluid velocity on the inner side of the 
surface. T+ 

2. Taking account of the features noted above, we consider the mathematical formulation 
of the problem of the separation flow around a thin axisymmetric permeable surface by an 
ideal incompressible fluid flow. We assume that the flow is irrotational everywhere outside 
the surface and its wake. Then, the Laplace equation is valid for the velocity potential 
in this domain. Surfaces of tangential velocity discontinuity converge with the edges of 
the surface under consideration during its separation flow and the Chaplygin--Zhukovskii hypo- 
thesis on finiteness of the velocity should be satisfied on these edges. The boundary condi- 
tion (i) is satisfied on the permeable surface itself, and the kinematic condition of con- 
tinuity of the normal velocity component and the dynamic condition of continuity of the 
pressure, on the surfaces of tangential velocity discontinuity. Moreover, conditions at 
infinite distance from the body and the wake as well as given initial conditions are used in 
the problem under consideration. 

The problem formulated above is reduced by the method of discrete vortices [i$ to the 
solution of a system of algebraic equations in the desired vortex circulations at each nominal 
time. In the case of permeable surfaces, the system of equations is nonlinear here and itera- 
tion methods must be applied to solve it. As computations showed, good convergence of the 
iteration process can be obtained by using successive approximations with relaxation [7] in 
which the initial approximation in the penetration velocity V i is determined at each time by 
the pressure difference in the preceding step. 

The hydrodynamic load on the surface under consideration is determined by means of the 
vortex circulations found at each nominal time by using the Cauchy--Lagrange integral and 
taking account of the relationships (3) and (4). The wake structure is found from the condi- 
tion of free-vortex motion together with the liquid particles. The stream characteristics 
(velocity and pressure fields, statistical Characteristics, etc.) are calculated from the 
known vortex circulations and the accompanying wake structure. 

3. Computations of the separation flow around axisymmetric surfaces of different shape 
(disc, hemisphere, sphere segment) with a different degree of permeability (o = 0; 0.I; 0.2) 
were carried out on an electronic computer on the basis of the method expounded above. The 
dependence of the penetration velocity on the pressure drop was assumed quadratic, i.e., 

V~ : kw sign (Apo)V " IApO], (5)  

where Vi = Vi/Ve is the dimensionless penetration velocity, and A-~=Af~/(I/2pV~) is the 
dimensionless pressure drop. Values of k w and ~ corresponding to o = 0.i and 0.2 were 
taken equal to k w = 0.Ii, 0.25 and ~ = i0, 5. 

Depending on the nature of the motion, the axisymmetric surfaces were replaced by a 
different quantity of discrete annular vortices (I0--- N <---I00) in the computations. The total 
length of the axisymmetric surface generator was taken as the characteristic dimension D; 

t 

here the computational spacing in the dimensionless time was At = I/(2N + i) ~-----~- 

is the dimensionless time). 0 
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Fig. l. Dependence of the magnitude 
of the relative disc drag on the de- 
gree of penetrability o: i) computa- 
tion by the model of a uniformly per- 
meable surface; 2) computation by the 
model of a uniformly perforated sur- 
face; 3) experimental data [5]. 

Fig. 2. Mean values of the longitudinal 
velocities: a) impermeable surface (o = 
0); b) permeable surface (o = 0.2). 

o ~  1\ ,, ,, 
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Fig. 3 Fig. 4 

Fig. 3. Distribution of the dimensionless tangential force over 
the disc surface (t = i0): i) o = 0~ 2) 0.i; 3) 0.2. 

Fig. 4. On the influence of acceleration and flat disc permeability 
on its drag: i) a = 0; 2) 0.I; 3) 0.2. 

Computational and experimental dependences on the degree of penetrability are shown in 
Fig. 1 for the relative drag coefficient c x of a disc, as determined from the formula 
c x = Cx(O)/Cx(O = 0), where Cx(O) and Cx(O = 0) are the drag coefficients of the permeable 
and impermeable discs, respectively. As is seen from the figure, the results of computations 
by means of the uniformly perforated surface model are in good agreement with the experimental 
data [5]. At the same time, the model of a uniformly permeable surface yields a result contra- 
dicting experiment. 

Diagrams of the longitudinal velocities u of the average flow in the wake behind a hemis- 
phere are shown to scale in the sections x = x/D = const in Fig. 2 (x is the axial coordinate). 
The average was taken after termination of the flow formation transient during hemisphere 
motion according to the law 
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{ o, F<o, 
v (F) = vo,7 >o. 

Lines of zero longitudinal velocity (u = 0), the boundaries of the reverse flow domains, 
are superposed by dashes. As is seen, the reverse flow domain is shifted downstream behind 
the permeable hemisphere, its extent increases, and the reverse flow attenuates (longitudinal 
velocities diminish). Ananalogous pattern is observed in the wake and behind other permeable 
surfaces. 

Figure 3 contains data on the distribution of the dimensionless tangential force charac- 
terized by the coefficient c T over the surface of the permeable disc. It is seen that the 
tangential forces are distributed nonuniformly over the surface and reach the maximal magni- 
tude near the edge of the disc. Moreover, in contrast to the normal component of the force, 
which diminishes as the degree of permeability ~ increases, the tangential component of the 
hydrodynamic force acting on the disc increases and can be com~nensurate with the normal 
component. 

Dependences of the disc drag coefficient c x on the dimensionless acceleration W are 
shown in Fig. 4 for different degrees of disc permeability. The motion law had the form 

i 0,7<0, 
wS--  two, 7 >o. 

Here W = (D/Ve2)(dVe/dt), where V e and dVe/dt are the instantaneous values of the 
velocity and acceleration. 

NOTATION 

Vi, penetration velocity; o, degree of permeability; kw, permeability coefficient; ~, 
Boussinesq coefficient; V, fluid velocity vector; ~, density; Ap, Ap ~ pressure drops on the 
uniformly permeable and uniformly perforated surfaces, respectively; Q, control volume; s, 
control surface; K, momentum vector; P, volume force vector; R, vector of the distributed 
hydrodynamic forces acting on the permeable surface; V e and dVe/dt , velocity and accelera- 
tion of the surface motion; cT, dimensionless tangential force coefficie_nt; Cx, drag coeffi- 
cient; Cx, relative drag coefficient; t, time; t, dimensionless time; At, computational time 
spacing; W, dimensionless acceleration; D, disc diameter; u = u/Ve, longitudinal component 
of the dimensionless fluid velocity; N, quantity of discrete vortices; n, T, normal and 
tangent to the surface. The superscripts "+" and "--" refer to different sides of the 
streamlined surface. 
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